3,659 research outputs found

    Laser Guide Star Adaptive Optics Integral Field Spectroscopy of a Tightly Collimated Bipolar Jet from the Herbig Ae star LkHa 233

    Full text link
    We have used the integral field spectrograph OSIRIS and laser guide star adaptive optics at Keck Observatory to obtain high angular resolution (0.06"), moderate spectral resolution (R ~ 3800) images of the bipolar jet from the Herbig Ae star LkHa 233, seen in near-IR [Fe II] emission at 1.600 & 1.644 microns. This jet is narrow and tightly collimated, with an opening angle of only 9 degrees, and has an average radial velocity of ~ 100 km/s. The jet and counterjet are asymmetric, with the red-shifted jet much clumpier than its counterpart at the angular resolution of our observations. The observed properties are in general similar to jets seen around T Tauri stars, though it has a relatively large mass flux of (1.2e-7 +- 0.3e-7) M_sun/year, near the high end of the observed mass flux range around T Tauri stars. We also spatially resolve an inclined circumstellar disk around LkHa 233, which obscures the star from direct view. By comparison with numerical radiative transfer disk models, we estimate the disk midplane to be inclined i = 65 +- 5 degrees relative to the plane of the sky. Since the star is seen only in scattered light at near-infrared wavelengths, we detect only a small fraction of its intrinsic flux. Because previous estimates of its stellar properties did not account for this, either LkHa 233 must be located closer than the previously believed, or its true luminosity must be greater than previously supposed, consistent with its being a ~4 M_sun star near the stellar birthline.Comment: Accepted for publication in the Ap

    Modeling the RXTE light curve of η\eta Carinae from a 3-D SPH simulation of its binary wind collision

    Full text link
    The very massive star system η\eta Carinae exhibits regular 5.54-year (2024-day) period disruptive events in wavebands ranging from the radio to X-ray. There is a growing consensus that these events likely stem from periastron passage of an (as yet) unseen companion in a highly eccentric (ϵ∼0.9\epsilon \sim 0.9) orbit. This paper presents three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the orbital variation of the binary wind-wind collision, and applies these to modeling the X-ray light curve observed by the Rossi X-ray Timing Explorer (RXTE). By providing a global 3-D model of the phase variation of the density of the interacting winds, the simulations allow computation of the associated variation in X-ray absorption, presumed here to originate from near the apex of the wind-wind interaction cone. We find that the observed RXTE light curve can be readily fit if the observer's line of sight is within this cone along the general direction of apastron. Specifically, the data are well fit by an assumed inclination i=45∘i = 45^{\circ} for the orbit's polar axis, which is thus consistent with orbital angular momentum being along the inferred polar axis of the Homunculus nebula. The fits also constrain the position angle ϕ\phi that an orbital-plane projection makes with the apastron side of the semi-major axis, strongly excluding positions ϕ<9∘\phi < 9^{\circ} along or to the retrograde side of the axis, with the best fit position given by ϕ=27∘\phi = 27^{\circ}. Overall the results demonstrate the utility of a fully 3-D dynamical model for constraining the geometric and physical properties of this complex colliding-wind binary system.Comment: 5 pages, 4 figures, accepted to MNRAS Letter

    Eta Carinae and Other Luminous Blue Variables

    Get PDF
    Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases

    Detection of the compressed primary stellar wind in eta Carinae

    Get PDF
    A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.Comment: Accepted for publication in the Astrophysical Journal Letter
    • …
    corecore